Massenspektroskopische Charakterisierung von *w*-Chloralkylphenylphosphanen

H. Schmidt

Halle (Saale), Fachbereich Chemie der Martin-Luther-Universität Halle-Wittenberg

Eingegangen am 27. November 1996 bzw. 24. März 1997

Herrn Prof.Dr. Siegfried Engels (Halle/S.) anläßlich seines 65. Geburtstages gewidmet

On the Mass Spectrometric Characterization of ω -Chloralkylphenylphosphines

Alkylendiphosphane der allgemeinen Formel R_2P -(CH₂)_n-PR₂ und alkylenverbrückte Triphosphane des Typs $RP[(CH_2)_n PR_2]_2$ als wichtige mchrzählige P-Ligandsysteme sind aus Organophosphiden und α, ω -Dihalogenalkanen zugänglich.

Für entsprechende PH-funktionelle Vertreter werden als Zwischenstufen ω -halogenalkylsubstituierte sekundäre Phosphane X(CH₂)_nPHR durchlaufen. Sieht man vom kürzlich in Substanz isolierten 3-Chlorpropylphenylphosphan [1] und dem eigentlichen Grundkörper der PH-funktionellen ω -chloralkylsubstituierten Phosphane ClCH₂PH₂ [2] ab, ist über diese bifunktionelle Substanzklasse mit nucleophilem PH-funktionellen Phosphanphosphor und elektrophilem ω -Kohlenstoffatom wenig bekannt.

Wir haben die Bildungsreaktion dieser Verbindungsklasse beispielhaft an der Umsetzung des Natriumphenylphosphids mit α, ω -Dichloralkanen und die aus diesen Reaktionen resultierende Produktverteilung untersucht. Neben ³¹P-NMR-Daten – hier wegen Überlagerung der Resonanzen der Titelverbindungen mit denen von Folgeprodukten nur bedingt aussagekräftig – dienten zur Charakterisierung der Reaktionsgemische GC/MS-Untersuchungen¹).

In Schema 1 ist die Produktverteilung der Reaktion zwischen PhP(H)Na (1) und Cl(CH₂)_nCl (2) (n = 1-5) zusammengestellt. Neben den erwarteten Titelverbindungen des Typs Cl(CH₂)_nPHPh (3), deren Bildung für n = 2-5 nachgewiesen werden konnte, wurde eine Reihe weiterer Folge- und Nebenprodukte identifiziert.

Aus den ω -Chloralkylphenylphosphanen werden für n = 2 - 5 unter intramolekularem Ringschluß (nach Metall–Wasserstoff-Austausch mit PhP(H)Na) P-Heterocyclen **4b**–e nach Weg (a) gebildet.

Die Reduktion nach Weg (b) zu Alkylphenylphosphanen $H(CH_2)_n P(H)Ph$ (**5a, b**) wird für n = 1; 2 zur dominierenden Reaktion, wobei 1,2-Diphenyldiphosphan (**6**) und Pentaphenylcyclopentaphosphan (**7**) als Oxidationsprodukte identifiziert werden konnten.

Durch Zweitsubstitution werden für alle fünf eingesetzten Dichloralkane die korrespondierenden Alkylen-bis-phenyl-

¹) Einzeldaten zur ³¹P-NMR-Charakterisierung sowie GC/ MS-Daten der in Tab. 1 nicht aufgeführten Verbindungen werden auf Anfrage vom Autoren zugesandt

Schema 1 Produktspektrum der Reaktion des PhP(H)Na (1) mit Dichloralkanen $Cl(CH_2)_nCl(2)$ (n = 1-5)

phosphane **8a–e** nachgewiesen (c), die für n = 3-5 ihrerseits Anlaß zu Redoxprozessen, wie sie von Issleib [3] für das 1,3-Diphosphanopropan näher untersucht worden sind, geben. Dabei werden unter Cyclisierung über P–P-Bindungsknüpfung (H₂-Freisetzung) Diphosphorheterocyclen **9c–e** nach (d) gebildet.

Während die höheren Chlorpropylphenylphosphane 3c-e(n=3-5) nach TIC- und ³¹P-NMR-Integral in nicht optimierten Ausbeuten um 62–73% der Theorie anfallen, konnte das 2-Chlorethylphenylphosphan (**3b**) (n = 2) lediglich in Spuren nachgewiesen werden. Hier entsteht in beträchtlichem Umfang (23% des ³¹P-NMR-Gesamtintegrals) 1-Phenylphosphiran (**4b**) (vgl. [4]). 2-Chlorethylphenylphosphan wird aber isolierbar, wenn PhP(H)Na mit einem Überschuß an 1-Brom-2chlorethan umgesetzt wird. Hierbei wird auch Phenylphosphiran (5%) identifiziert, Hauptprodukte dieser Umsetzung sind aber Pentaphenylcyclopentaphosphan (7) und 1,2,3-Triphenyl-1,2,3-triphospholan, (PhP)₃C₂H₄ (**10**), dessen Bildung Baudler bei der Spaltung von (PhP)₅ mittels Kalium und anschließender Cyclisierung mit Cl(CH₂)₂Cl beobachtet hatte [5].

Die durch nucleophilen Angriff eines Phosphidions auf eine 1,2-Dihalogenverbindung realisierte Darstellung des CICH₂CH₂P(H)Ph ist hervorzuheben, weil man nach früheren experimentellen Befunden [6] eine Ethyleneliminierung (heterolytische Fragmentierung) nach Gl. 1 erwarten würde.

 $PhP(H)^{-} + X - CH_2CH_2 - X \rightarrow \{PhP(H)X\} + CH_2 = CH_2 + X^{-}$ (1)

Für die Reaktion des Natriumphenylphosphids (1) mit Dichlormethan konnte kein entsprechendes Chlormethylphenylphosphan nachgewiesen werden. Die von Stelzer *et al.* [7] beschriebene Produktverteilung für diese Reaktion wird bestätigt, allerdings findet sich in der hier untersuchten Reaktionslösung ebenfalls neben Pentaphenylcyclopentaphosphan 7 merklich 1,2-Diphenyldiphosphan **6**, die beide NMR- und massenspektroskopisch identifiziert wurden. Das eigentliche Hauptprodukt der Reaktion ist Methylphenylphosphan (**5a**), des weiteren wird Methylen-bis(phenylphosphan) (**8a**) nachgewiesen. Die Bildung beider Phosphane kann über die nicht nachgewiesene Zielverbindung CICH₂P(H)Ph oder ein nicht identifiziertes Phosphaalken-Intermediat erklärt werden [7].

In Tab. 1 sind die Einzeldaten der massenspektrometrischen Fragmentierung der Chloralkylphenylphosphane zusammengestellt, Schema 2 illustriert wichtige Fragmentierungswege dieser Phosphane.

Neben dem jeweiligen Molekülionenpeak mit mittlerer bis geringer Intensität findet man für die vier charakterisierten ω -Chloralkylphenylphosphane die für das PhP-Strukturelement typischen Peaks vom Typ A bei m/z 107–109, für n = 2 ist m/z 108 Basispeak. Außerdem wird für n = 3 bzw. 4 mit m/z121 das PhP(H)C- (B) und für n=2-5 bei m/z 124 das Methylphenylphosphanfragment C registriert. Für n = 3-5 wird das [PhHPCH₂Cl]⁺-Bruchstück (D, m/z 158), für n=3; 4 ein Fragment E bei m/z 143 großer Intensität nachgewiesen. Für die Ausbildung beider Ionen ist eine Cycloalkan-Eliminierungsreaktion unter Wanderung des Chlorsubstituenten (Eli-

Schema 2 Fragmentierungsschema zu den Elektronenstoßionisationsmassenspektren der ω -Chloralkylphenylphosphane **3b**-e

minierung unter Wanderung einer Gruppe [8]) zum Phosphorbzw. α -Kohlenstoffatom, wie in Schema 2 formuliert, anzunehmen.

Sterisch offenbar begünstigt wird bei hinreichend langer Alkylkette (n= 4; 5) in den EIMS der Titelverbindungen unter Cl-Abspaltung Ringschluß zu Phosphoniumstrukturen (Ausbildung fünf- bzw. sechsgliedriger Ringe, **F**) gefunden. Durch Reaktion des P-deuterierten Phenylphosphids (Deuterolyse von PhP(SiMe₃)₂ mit Methanol-d⁴, anschließend Metallierung mittels Na) mit den entsprechenden Dichloralkanen werden die P-deuterierten Chloralkylphenylphosphane Cl(CH₂)_nP(D)Ph zugänglich.

Tab. I Massenspektrometrische Fragmentierung der ω -chloralkylsubstituierten Pl	$henylphosphane CI(CH_2)_{n}P(H)Ph^{*}$ (3b-	e)
---	--	----

	m/z	3b ^d)	3c	3d	3e
Fragment	(I _{rel})				
M ^{t b})		(172 °) (44)	186 °) (29)	200 °) (93)	214 °) (48)
$[PhHP(CH_2)_n]^+$ (F)	M-35			165 °) (100)	179 °) (100)
$[PhHPCH_2Cl]$ [†] ^b) (D)	158		(9) °)	(5)	(4)
[PhPHCl] [±] ^b)	144	(24) °)			
$[PhPCl]^{+ b}$ (E)	143	(10)	(16)	(5)	(3)
$[PhHPCH_3]^{\dagger}(C)$	124		(100) °)	(4)	(9) ^c)
$[PhPCH]^+(\mathbf{B})$	121	(12) °)	(13) ^c)	(7)	(5) ^c)
[PhPH] ⁺	109	(51) ^c)	(76) ^c)	(55) ^c)	(40) ^c)
[PhP] [±] (A)	108 °)	(100) ^c)	(80) °)	(26) °)	(18) °)
$[C_6H_4P]^+$	107	(56)	(43)	(20)	(12)

^{a)} m/z (I_{rel}); ^{b)} bezogen auf ³⁵Cl; ^{c)} für P-monodeuterierte Derivate PhP(D)(CH₂)_nCl wird (m/z+1) registriert; ^{d)} Zum Vergleich EIMS des Isomeren PhP(Cl)CH₂CH₃ m/z (I_{rel}): 174 (17), 172 (50), 145 (34), 144 (23), 137 (5), 109 (20), 108 (27), 107 (69), 90 (6)

Für die in Schema 2 formulierten Ionen **A**–**F** wird Monodeuterierung beobachtet (vgl. Tab. 1, Fußnote ^c)). Bei **A** (m/z 108 \rightarrow 109) und **B** (m/z 121 \rightarrow 122) zeigt das Auftreten deuterierter Fragmente Deuteriumwanderungen, wie sie auch von P-deuterierten Arylphosphanen bekannt sind [9], (D-Verschiebung in den Arylrest), an.

Der Vergleich des Massenspektrums von PhP(H)(CH₂)₂Cl (**3b**) mit dem EIMS des zu Vergleichszwecken dargestellten Isomeren P-Chlorethylphenylphosphan PhP(Cl)C₂H₅ (Tab. 1, Fußnote^d)), welches deutliche Abweichungen von den oben diskutierten Fragmentierungswegen aufweist, schließt die Bildung dieses Chlorphosphans bei der Reaktion des PhP(H)Na mit Br(CH₂)₂Cl aus und ist neben ¹³C- und ³¹P-NMR-Daten (im Erwartungsbereich sekundärer Phosphane) ein weiterer Hinweis auf die Konstitution des 2-Chlorethylphenylphosphans.

Dem Fonds der Chemischen Industrie danken wir für finanzielle Unterstützung.

Beschreibung der Versuche

³¹P-NMR-Spektren wurden mit den unverdünnten Reaktionslösungen an einem AC 80 der Fa. Bruker gemessen (Proben mit Benzol-d⁶ bzw. Methanol-d⁴ in Kapillaren eingeschmolzen, extern Deuteriumoxid-Hülle als Lock, chemische Verschiebungen auf Standard 85%ige H₃PO₄ bezogen, (–) für Hochfeldverschiebung). ¹³C-NMR-Spektren wurden mit einem Gemini 200 (Fa. Varian) in Benzol-d⁶ ermittelt.

Die MS-Charakterisierung erfolgte ebenfalls mit nicht weiter verdünnten Proben auf einem HP 5972A-Gerät (Quadrupol; 70 eV) gekoppelt mit einem Kapillargaschromatographen des Typs HP 5890 II (Säule HP-5MS: 30 m × 0,25 mm). Alle Injektionen wurden mit He als Trägergas im split-Mode durchgeführt. Temperaturprogramm: (70 °C/1 min; 20 grd/min auf 250 °C, dann konstant); Injektortemp.: 250 °C, Interfacetemp.: 280 °C.

ω -Chloralkylphenylphosphane $Cl(CH_2)_n P(H)Ph(\mathbf{3c-e})$

12,5 g (113,6 mmol) PhPH₂ in 90 ml trockenem THF werden bei Raumtemperatur unter Rühren mit 2,3 g (100 mmol) Natrium metalliert. 10 ml dieser Stammlösung (ca. 11 mmol an PhPHNa) werden auf –78 °C gekühlt und unter Rühren zu 30 mmol (Überschuß) des jeweiligen Dichloralkans (in 20 ml THF, –78 °C) innerhalb von 5 Minuten getropft. Man läßt auf Raumtemperatur erwärmen und gibt jeweils 10 ml trockenes *n*-Hexan zu. Für die NMR-spektroskopische oder GC/MS-Charakterisierung entnimmt man Proben.

³¹P-NMR: **3c**: -53,9 ppm/Dublett/¹J(PH) 215 Hz; **3d**: -52,8 ppm/Dublett/¹J(PH) 212 Hz; **3e**: -52,9 ppm/Dublett/¹J(PH) 212 Hz.

2-Chlorethylphenylphosphan (3b) über 1-Brom-2-chlorethan

6 g (54,5 mmol) Phenylphosphan werden bei Raumtemperatur unter Rühren mit 1,2 g (52,2 mmol) Natrium in 200 ml Ether über 24 Stdn. metalliert. Die so erhaltene gelbgrüne Lösung wird auf -78 °C gekühlt und anschließend unter Rühren über einen Krümmer zu einer auf -78 °C gekühlten Lö-

sung aus 14,8 g (103,2 mmol) 1-Brom-2-chlorethan in 200 ml Ether gegeben. Man läßt unter Rühren auf Raumtemperatur erwärmen, filtriert vom ausgefallenen Natriumbromid ab (G3/Kieselgur), engt im Wasserstrahlvakuum zur Trockne ein, nimmt mit 100 ml *n*-Hexan auf und trennt durch Filtration vom ausgefallenen Feststoff ab. Nach Abdestillieren des Lösungsmittels wird fraktioniert. Farbloses Öl; *Kp.* (0,1 Torr): 35 °C; Ausbeute: 0,2 g (2,2%). Das Produkt ist mit PhPH₂ verunreinigt. ³¹P-NMR: -56,5 ppm/Dublett, ¹J(PH) 215 Hz ¹³C{¹H}-NMR: 28,1/d/17,1 Hz (P–<u>C</u>); 44,2/d/4,2 (P–C-<u>C</u>); Aromaten–C-Resonanzen überlagert.

Bildung der P-deuterierten ω -Chloralkylphenylphosphane $PhP(D)(CH_2)_nCl$

16 g (63 mmol) Phenyl-bis(trimethylsilyl)phosphan werden in 100 ml trockenem Diethylether mit 8g Methanol-d⁴ (Überschuß) tropfenweise versetzt und über Nacht bei Raumtemperatur gerührt. Anschließend werden im Wasserstrahlvakuum bei Raumtemperatur alle leichtflüchtigen Bestandteile abdestilliert. Das zurückbleibende PhPD₂ wird ohne weitere Reinigung in 100 ml THF mit 1,4 g (61 mmol) Natrium metalliert, anschließend werden Portionen dieser Stammlösung – wie für PhPHNa näher beschrieben – mit den entsprechenden Dichloralkanen bzw. mit BrCH₂CH₂Cl zur Reaktion gebracht. Aufarbeitung wie oben, Identifizierung über GC/MS.

Literatur

- [1] L. M. Green, D. W. Meek, Polyhedron 9 (1990) 35
- [2] B. Frontal, H. Goldwhite, D. G. Rowsell, J. Org. Chem. 31 (1966) 2424
- [3] a) K. Issleib, P. Thorausch, H. Meyer, Org. Magn. Res.
 10 (1977) 172; b) K. Issleib, A. Balszuweit, P. Thorausch, Z. Anorg. Allgem. Chem. 437 (1977) 5
- [4] D. C. R. Hockless, Y. B. Kang, M. A. McDonald, M. Pabel, A. C. Willis, S. B. Wild, Organometallics 15 (4) (1996) 1301
- [5] M. Baudler, J. Vesper, M. Sandmann, Z. Naturforsch. B **27** (1972) 1007
- [6] K. Issleib, H. Weichmann, Chem. Ber. 101 (1968) 2197
- [7] K. P. Langhans, O. Stelzer, Chem. Ber. 120 (1987) 1707
- [8] F. W. McLafferty, F. Turecek, Interpretation von Massenspektren, Spektrum Akademischer Verlag Heidelberg, Berlin, Oxford 1995, S. 227
- [9] H. Schmidt, unveröffentlicht

Korrespondenzanschrift: Dr. H. Schmidt Institut für Anorganische Chemie Fachbereich Chemie der Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Str. 2 D-06120 Halle (Saale)